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Abstract The formation mechanisms of the crystallographic features of phase transformation, including orienta-
tion relationship, habit plane, growth direction and transformation strain, are described; the early theoretical studies on
the invariant line strain model are summarized; and the details of a “three-dimensional invariant line strain model” pro-

posed by one of the authors and his colleague abroad are presented. The experimental results on the crystallographic fea-

tures of needle-, rod- or lath-shaped precipitates formed in the FCC <>BCC and HCP < BCC precipitation transforma-
tions were in excellent agreement with the predictions from the model, thus suggesting that the model could well serve as
a phenomenological theory of crystallography for diffusion-controlled phase transformations .

Keywords: solid-state phase transformation, crystallographic feature, invariant line strain model,

phenomenological theory.

The phenomenological theory of martensite crystallography (pTMC)H ! proposed in the early
1950’ s has been successfully employed to predict the crystallographic features of martensitic ( shear)
transformations, including the habit plane, orientation relationship (OR), the amount of lattice-in-
variant shear and the magnitude and direction of the shape deformation. However, no work was done
on the crystallographic theory of diffusion-controlled (non-shear) transformations until the early 1980s
when Dahmen and his co-workers'*'>! tackled this problem for the first time. Inspired by the conclu-
sion that the crystallography of the martensitic transformations was determined by an “invariant plane
strain” involved in the transformations, they proposed that the crystallography of a diffusion-controlled
transformation might have been controlled by an “invariant line strain” associated with the transforma-
tion. By comparing the results of other investigators with the predictions from their won two-dimen-

sional invariant line strain model, Dahmen et al. [4,5]

confirmed the validity of the invariant line strain
principle in explaining and predicting the crystallography of diffusion-controlled transformations. Im-
mediately after Dahmen et al. proposed the model, Luo'’, and Weatherly's! extensively studied the
theoretical aspects of the model, and precisely measured the crystallography of precipitation transfor-
mation in an Ni-Cr alloy, thus further confirming the effectiveness of the invariant line strain princi-

11), [6]

ple. A three-dimensional invariant line strain mode was then proposed, so that a more compre-

hensive crystallographic theory for diffusion-controlled phase transformations was developed. In this
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review paper, the principle of the three-dimensional invariant line strain model is elucidated, the rel-
evant calculational method is described, and the experimental results of crystallographic studies in
some FCC/BCC and HCP/BCC alloy systems and their comparisons with theoretical predictions are

presented .
1 Crystallography of phase transformation

The crystallographic features of a solid-state phase transformation usually include the orientation
relationship between parent and product phases, habit plane, crystal growth direction, and the magni-
tude and direction of strain involved in the transformation; for a shear transformation, they include the

[3]

relevant shear parameters in addition*>’ . These features are thought to be attributed to the strain char-

acteristic of the solid-state transformation.

The habit plane is an interface with a minimum interfacial energy, because both the chemical
and structural components of the interfacial energy are usually minimum due to a good matching of the
atoms in the two lattices across interface, and due to a small strain (dilatation and/or rotation) to
which the habit plane is nominated during the transformation. According to the PTMC, the habit
plane is an invariant plane in the parent phase that is neither rotated nor dilated in martensitic trans-
formations. In a diffusion-controlled phase transformation like the precipitation transformation, howev-
er, the habit planem is usually an “unrotated (untilted)” plane in the parent phase with small dila-
tion. Meanwhile, it is a coherent or semicoherent interphase interface which has interfacial defects
such as misfit dislocations and ledges. Since the interfacial misfit dislocations and ledges are generat-
ed to accommodate the misfit (strain) across the interface, the density of misfit dislocations and
ledges in the low-energy habit plane must be low, thus making the habit plane a “clean interface”,

which has been repeatedly observed in precipitation transformations! 7! .

The orientation relationship is usually described with a pair of parallel lattice planes in the parent
and product phases and a pair of parallel lattice directions lying in the common parallel planes.
Sleeswyk!®!, Ryder and Pitsch[™°] independently studied the orientation relationship in phase transfor-
mation, finding that if a plane and a direction in the plane were assumed to keep unrotated (untilted)
during the transformation, then the resultant orientation relationships could be described within a
small region in a stereographic projection. As mentioned above, the unrotated plane is the possible
habit plane of the transformation. It is therefore evident that the habit plane and orientation relation-
ship can be simultaneously predicted based on the above assumption, and the invariant line strain
model for predicting the crystallography of phase transformation was then proposed based on this as-

sumption .

It has been observed that a needle-, tod-, or lath-shaped (Widdmannstatten) precipitate elon-
gates (grows) in a specific high-index (irrational) lattice direction which is usually a few degs. (less
than 10 degs.) apart from a close-packed direction in the parent phase (see refs. [6,11] for the

[4.5] and experimental studies'®'!! showed that this

lath-shaped precipitates ) . Theoretical analyses
growth direction itself was the direction of the invariant line vector of the transformation. According to
the definition of an invariant line, the misfit along the invariant line is zero, therefore a Wid-

dmannstatten precipitate would naturally grow (elongate) parallel to the invariant line, so as to mini-
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mize the strain free energy of the alloy systemm .

2 Invariant line strain models for solid-state phase transformations
2.1 Invariant line and invariant line strain

The invariant line strain can be derived from the invariant plane strain prevailing in the marten-
sitic transformations. According to the PIMC!' ™3}, the martensitic transformation is accomplished via
an invariant plane strain P, consisted of three mathematical entities (strains) ; a lattice invariant shear

(a simple shear) P, a lattice deformation B and a rigid-body rotation R :
P, = RBP. (1)
Eq. (1) can be rewritten as
S = P,P' = RB. (2)

Since both P, and P (and their inverses) are invariant plane strains, and the resultant of two invari-

ant plane strains is an invariant line strain®’, § = RB must be an homogeneous invariant line strain.

An invariant line is defined as a lattice direction vector in the parent phase, which is neither ro-
tated nor extended (or contracted) by the phase transformation, thus becoming an intact direction in

the product phase. Mathematically, an invariant line vector X, possesses the following feature:
RBX, = X,. (3)

The lattice invariant shear P in eq. (1), and hence the invariant plane strain, are in general
absent in a diffusion-controlled transformation, however, a rigid-body rotation of the product lattice
relative to the parent one, R, following the lattice deformation B is still needed to keep an optimum
(energetically favoured) OR. The expression of the overall strain for a diffusion-controlled transforma-

tion is thus similar to that shown in eq. (2),
D = RB, (4)

where D is the invariant line strain for a diffusion-controlled transformation; and it is obviously differ-

ent from S in eq. (2), although both are referred to as invariant line strain.

2.2 Two-dimensional invariant line strain model

The process of the invariant line strain involved in a phase transformation can also be described
figuratively with a circle-ellipse or sphere-ellipsoid analogue proposed by Bilby and Christian['?! .
Fig. 1 shows a circle-ellipse analogue in which a circle with a unit radius (representing the parent
phase) is transformed into an ellipse with axes o ( < 1) and b ( > 1) (representing the product
phase) by a lattice deformation B (fig. 1(a)). There exists a specific vector U in the circle which,
while keeping its magnitude unchanged, is rotated (tilted) by § deg. By the lattice deformation, it

becomes BU . U is referred to as an unextended vector*) .
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If a reverse rigid-body rotation @ is applied to vector BU to bring it back to its original position,
U becomes an invariant line vector of phase transformation (fig. 1(b)). The final orientation rela-
tionship between the parent and product phases is therefore determined by the rigid-body rotation 8

which, under a condition of invariant line strain, can be calculated in terms of the axes a and p14 y
cosf = (1 + ab)/(a + b). (5)

Figures 1(c) and (d) show an example of calculating the magnitudes of @ and & and determin-
ing the final orientation relationship in terms of 6. If assuming the figure plane in figs. 1(c) and (d)
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Fig. 1. A circle-ellipse analogue of solid-phase transformation. (a) A unit circle with radius of 1
is transformed into an ellipse with two axes @ ( <1) and b ( > 1) by the lattice distortion; (b)
the vector U is transformed into an invariant line by rotating the ellipse (precipitate) 6 deg.
clockwise; (c) superposition of close-packed planes (111) of FCC lattice (full circles) and
(110) of BCC lattice (open circles) in an N-W orientation relationship (corresponding to fig. 1
(a)); (d) rotating the FCC lattice 5.26 deg. Clockwise will lead to K-S orientation relationship
(corresponding to fig. 1(b)).
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to be parallel to the close-packed planes (111);//(110), in an FCC/BCC system keeping an N-W
orientation relationship described as (111),//(110),, [011],//[001],, [211];//[110], (subscripts

f and b stand for FCC and BCC lattices respectively) (fig. 1(c)), and setting up a coordinate system
of

X//1/2[011],— [001],,
Y//1/2[211];, — [110],,

with the vector 1/2[01T]f transformed into [ 001 ], along the X axis, and 1/2[211 1; into [ITO]b
along the Y axis, then a and b have the forms of

e = {[001],]/]122[011);] = a,/((W2/2)ap) = V2/(ay/ay),
b = (110, [/]120211]¢| = 2424,/ (J6a; = (2/3)/(ai/ay),

where @,/ ay is the lattice parameter ratio of FCC to BCC lattices. When a;/a,, = +2, for example,

a=1and b=y6, and hence § = 0° (eq. 5), indicating that no relative rotation takes place between
the two lattices, thus keeping the N-W orientation relationship originally assumed in fig. 1(c) un-
changed. If, on the other hand, ay ay, = J3/42, then 6 = 5.26°, leading to a relative rotation of
5.26° between the two lattices, and hence to a K-S orientation relationship (fig. 1(d)). According-
ly, with a;/ a, ranging from 4/3/2 10 42, the orientation relationship will be located between K-S and
N-W relationships. As shown in fig. 1(b), the relative rigid-body rotation will produce an invariant
line U which is lying in the parallel close-packed planes (111);//(110), and usually deviating by a
small angle from the parallel close-packed direction [110],//[111],(fig. 1(d)).

It is noted that the two-dimensional invariant line strain model proposed by Dahmen et al. (451

and discussed above assumes a pair of parallel close-

T104100,

packed planes in the two lattices, such as {111},//

010; {110}, in FCC&BCC transformations and (0001),//
R /110
X \The first conc of | 110}, in HCP&BCC transformations. Although this
nextended lines

assumption is valid in a number of transformations, it
) 110; restricts the flexibility of the invariant line strain
model in predicting the crystallography of phase
transformation. In addition, this model does not take
into account the mathematical relation of the invariant

b obec  line with the habit plane.
® fco

2.3 Three-dimensional invariant line strain model

Fig. 2. A stereographic projection showing the Bain ori- .
. o , If the vectors U and BU in fig. 1(a) are al-
entation relationship, the cones of unextended lines, and

the scheme of determining the invariant line of phase trans- lowed to rigid-body rotate simultaneously around the
formation. X axis by 360 degs., then two coaxial cones with U
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and BU serving as their generatrices respectively are generated. The one formed by U is referred to
as the first cone of unextended lines, and the one containing BU the second cone of unextended
lines'*! (see fig. 2). By further rotating the second cone of unextended lines in such a manner that it
intersects the first cone, two intersection lines are produced. According to the definition of the cone of
unextended lines, the two intersection lines must be unextended but are not necessarily untilted. If
the rotation itself can make one of the two intersection lines untilted at the same time, an invariant
line vector results, and the transformation becomes invariant line strain controlled. The invariant line
so formed is no longer necessarily lying in the close-packed planes, as with the case of the two-dimen-
sional model. These rotation-intersection processes constitute the basis of calculating invariant line of

phase transformation based on the three-dimensional invariant line strain model(¢+11]

{101}, X, The concept of cone of unextended lines was

9.74° [001]/[001], first proposed to describe the Bain lattice deformation

111, ) A (fig. 3) involved in the FCC&BCC (BCT) transfor-
(3]

of [ % _ mations
N * 1 [o105/(110],

T,

. The Bain deformation is equivalent to an

outward expansion by 6 deg. of the first cone of un-

extended lines to reach the position of the second

[110]; X, ,/[100];  [110] cone of unextended lines. The two cones can be de-
/[100], /[110}, /[010],

scribed by equations consisted of the ratio ay/a,,
Fig. 3. A schematic diagram of Bain lattice distortion.

and their semiapex angles relative to the X,{contrac-

tion) axis of the Bain distortion, ¢ and ¢’ (fig. 2), are functions of the ratio a;/a, too® . Thus
G=¢" - ¢.

In order to calculate the invariant line and crystallography of a phase transformation, the strain

matrix D in eq. (4) must be first calculated in terms of the Bain deformation B and rigid-body rota-

tion R. For the FCC&BCC(BCT) transformations, the Bain deformation is the most possible lattice
deformation mode, because it involves the smallest possible atomic displacementsm 15 the details of
Bain deformation are shown in fig. 3. A BCT cell is delineated within the FCC lattice, and the Bain
deformation is realized by compressing the BCT cell in the [001] direction and expanding it in [110]
and [TIOJ . As a result, a BCC cell is formed and a Bain orientation relationship produced (fig. 2).

Based on the coordinate system in figs. 2 and 3, the matrix of the Bain deformation can be expressed

as
77 0 O
B=10 3 0}, (6)
0 0 :

where 7, = 7, = N2/(ai/ ay), and 73=1/(ay/ay) . It should be noted that in other alloy systems
involving crystal structure and correspondence other than the FCC/BCC ones, such as HCP/BCC, the
pure lattice deformation affecting the structural change is also frequently referred to as the Bain defor-

mation, or more specifically, the generalized Bain deformation'™*’ .
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The Bain deformation is usually followed by a rigid-bedy rotation of the product phase relative to
its parent phase, so as to reach an energetically favoured orintation relationship or an optimum match-
ing between the two phases. Mathematically, the rigid-body rotation may be realized either in a single
step, or in several steps, depending on the range of the orientation relationship in consideration. The
rotation matrix R in eq. (4) is then calculated in terms of the component rigid-body rotation(s) . For
example, the K-S orientation relationship can be reached in two steps (fig. 2). Specifically, starting
from the Bain OR, a rotation R,(8;) =9.74°/[110]; will result in an N-W OR, and a further rota-
tion from the N-W OR, R,(8,) = —5.26°/[111]; leads to a K-S OR. The total rigid-body rotation
for obtaining the K-S OR is therefore R = R, R, . A right-hand rule is used to define the sense of the
rotation angle: a clockwise rotation giving a negative angle, while a counterclockwise rotation a posi-

tive one. The K-S OR resulting from the above rotations are described as

(111),//(101),,
(101]//[111],, (7)
[121],//0121],.

It is seen from fig. 2 that the second cone of unextended lines is rotated by R, reaching a new
position and becoming the third cone of unextended lines or the rotated second cone. The third cone
of unextended lines intersects the first cone at X; and Xy, producing two intersection lines X and

X1, one of which (assumed to be X|) is the possible invariant line of the transformation.
2.4 Calculation of the invariant line

The indices of the intersection lines X and X|; can be calculated using matrix algebraic method
based on a scheme illustrated in fig. 2. The readers may refer to refs. [6,11] for details of the cal-
culation. According to the definitions of the cones of unextended lines, X;and X so obtained are all
unextended, but not necessarily all invariant. If RBX; = X;, then X is an invariant line. The geom-

etry in fig. 2 dictates that only X can be an invariant line.

If a given rotation R equivalent to a measured or assumed OR is used in the calculation, then

the resultant X; may not be but very close to a genuine invariant line[®

. In order to obtain a genuine
invariant line, and hence to ensure a genuine invariant line strain, the OR should not be fixed before-
hand in the calculation. Instead, it should be determined based on a first principle of invariant line
strain! . In the calculation illustrated in fig. 2, for example, only the first rotation is fixed at
R (6;)=9 .74°/[110];, while R,(8,) = 6,/1 ﬁl]f is allowed to vary to produce an invariant line.
Obviously, the first rotation leads to a relationship (111 )¢//7(101), (eq. (7)). A searching and
finding computer program was worked out and used to calculate the invariant line X| and the accompa-
nying rotation angle §,. In the present calculation, X is taken to be a genuine invariant line if the
angle between RBX | and X, is equal to or less than 0.0001°. The calculations showed that 4, for pro-
ducing an invariant line was slightly ( < 0.5°) deviating from that in an FCC/BCC alloy system with

a lattice parameter ratio around 1.25, suggesting that the OR for which a genuine invariant line strain
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occurred should be in fact not a genuine K-S one. In this case, the close-packed directions in the two
phases, [TOI]; and [1 Tl]b, (eq. (7)) were slightly apart, which could be most clearly shown and

measured in the composite electron diffraction pattern (111],//[101 ]b[S’“] .

According to the principle of matrix algebra, the invariant line and unextended lines (vectors)
associated with the transformation should be equivalent to the eigenvectors V;, V, and V; which are
in turn determined by the eigenvalues A;, A, and A, of the invariant line strain RB . An eigenvector

is actually an untilted line vector. It is also pointed out!®12]

that the magnitudes of the three principal
strains of RB are A;, A, and A5, and their directions parallel to V,, V, and V; respectively. (The
three principal strains so determined are no longer orthogonal.) For an invariant line strain, one of
the three eigenvalues (assumed to be A;) must be equal to unity, and the other two greater and less

2]

than unity respectively!!?), V| is therefore an invariant line and the others are merely untilted lines.

Calculation "’ showed that V, and X | were indeed identical .

2.5 Crystallographic predictions based on the invariant line strain model

It is evident from the above discussions that the Bain deformation followed by the relative rigid-
body rotation(s) dictated by an invariant line strain yields an OR of the transformation. In the calcu-
lation represented in fig. 2, R,(8;) =9.74°/{110];is first given, while 6, in R,(8,) = 6,/[111];
is allowed to vary to produce an invariant line. The final OR of the transformation can therefore be
precisely predicted by the invariant line strain model, if a range of the OR such as that dictated by R,
(8,) is known or given. It should be noted that the assumption of R,(6;) =9.74°/[110]; restricts
the generality of crystallographic calculations, though it is valid in a number of precipitation transfor-

mations having parallel close-packed planes (see table 1), and it can make the calculations simpler.

Table 1 A comparison of the calculated and experimental crystallographic features for

three diffusional precipitation transformations

Alloy and Crystallographic

] Experimental Calculated Discrepance
transformation features
Cu-0.33wt. % ot habit plane (3.1,3.5,5.5) 5 (3.45,3.10,5.19) 1.4°
(FCC—~BCC) growth [5,6,1],; [0.63,0.76,0.13],.; 0.1°
Diffusional direction (1) ./ (110) o5 (111) g,/ (110) 40 5 0°
transformation OR [110],. +0.5°—~[111],,, (110]. + 0.5°=>[111],,
[112],, +0.5°—~[112],.. [112],, +0.5°—[112],..
Cr-10wt. % Niit) habit plane (1,2,)503 (0.427,0.813,0.395) .3 0.2°
(BCC—~FCC) growth (12,1,11]5; [0.733,0.056,0.677 1,3 0.4°
Diffusional direction (111) g, // (101D 5 (111) g /7 (110) e 5
transformation OR [101]4. +0.33°>[111],,, [101], +0.3°—[111],.. 0.03°
(1211, + 0.33°—>[121],,. [121]. + 0.3°>[121],.,
7Zr-2.5wt. % Nb''>! habit plane (0001) p 7/ (110) b, (0001)4,, /7 (110),,, 0°
(HCP—~BCC) growth 6.4°—>[1010],,, 8.2°—[1010],,, 1.8°
Diffusional direction in plane(0001),,, in plane(0001),,
transformation OR (0001) bep / (110) e, (0001) 4, /7 (110)
[1120],,, + 1.5°~>[111],., (112014, + 1.3°—[111],.  0.2°

[1100],, + 1.5°>[112],,,

[1100],, +1.3*—=[112],.

Since there is no misfit between the two lattices along an invariant line, a needle-, rod- or lath-
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shaped precipitate would naturally grow along this line, so as to lower the strain energy incurred by

(5] Dahmen'® has indicated that an invariant line has zero directional misfit in the

the transformation
real space, and is perpendicular to the direction with minimum planar mismatch in the reciprocal
space. In other words, the invariant line is lying in a set of parallel and minimum-mismatched planes
in the two lattices. In the FCC/BCC or HCP/BCC systems, for example, the invariant line of trans-
formation is usually lying in the parallel or nearly parallel close-packed planes {111},/{110}, or

(0001),/{110}, (1able 1) .

Being an interface with minimum misfit (strain) , the habit plane is defined by the invariant line
and an untilted line in the present invariant line strain modell®'2) . It can therefore be determined b
P Y

Vix Vyor V, x V;. The habit plane so determined is obviously an untilted plane.

Each two of the three eigenvectors (untilted vectors) V,, V, and V, can be cross-multiplied to
define a plane, hence the three planes so determined are all untilted and may serve as a habit plane
or interface. The interfaces (habit plane) containing the invariant line, namely V,; x V, and V; x
V; have, whereas the one not containing the invariant line, viz. V; x V; has not, been observed in
lath-shaped precipitates[“‘”] . Which of the interfaces V| x V, and V| x V, is taken to be the habit
plane is judged based on (i) the magnitudes of V, and V;, and (ii) the density of interfacial defects
such as dislocations and ledges in the interface. An interface defined by V, and the smaller V, and

V3, and/or having a minimum defect density is likely to be the habit plane. The interfacial disloca-

tions and ledges are formed to accommodate the misfits across the interface, so that the habit plane
with minimum misfit would contain a minimum density of defects, thus manifesting itself as a “clean

interface” (78]

As with the PTMC, the invariant line strain model provides merely a phenomenological descrip-
tion of the transformation crystallography, saying nothing about the mechanism of atomic displacements
involved in the transformation. While the PTMC is proposed for a shear transformation, the invariant
line strain model is developed for a diffusion-controlled one, thus it can be referred to as a phe-

nomenological theory of diffusional transformation crystallography.
3 Comparisons of the predicted and experimental crystallographies

The theoretical and experimental studies of crystallography of phase transformations based on the
invariant line strain model have so far essentially focused on the FCC&BCC transformations, although

some preliminary studies on the HCP&BCC ones have been conducted' >8] Listed in tablel are the
experimental crystallographic features (OR, habit plane and growth direction) and their comparisons
with the predictions from the invariant line strain model for the precipitation reactions occurring in Cu-
Cr(FCC~BCC)™M?, Cr-Ni(BCC—FCC)"" and Zr-Nb(HCP—>BCC)!"). In order to enhance the
accuracy of the experimental measurements, special TEM methods developed by the authors in their

prolonged crystallography studies of phase transformations, including the double edge-on trace analysis

for habit plane (interface) orientation measurement!'®! | making use of special (low-index) composite
[6,11]

electron diffraction patterns for OR determination , and oriented-tilt trace analysis for determining

[11]

the growth (axial) direction of Widdmannstatten precipitates’ ', have been utilized to gather the
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crystallographic information of these transformations.

It is evident from tablel that the experimental crystallographic features of the three precipitation
transformations are in excellent agreement with those predicted by the invariant line strain model, thus
suggesting that the model is valid in predicting the crystallography of diffusional Widdmannstatten pre-
cipitation. It should be noted that not only the V, x V, habit planes of {335} in Cu-Cr'™ and
{112}, in Ni-Cr'® and Cr-Nil'"?, but also the V| x V, interfaces which were found to be the parallel
planes {111};/{1101, in all these alloy systems, were experimentally observed. As predicted, all
these interfaces contain the invariant line. The {335 ff and {112}, were considered as the habit
planes, because they met the two conditions for a habit plane: (i) being defined by the invariant line
V, and the smaller (contracted) untilted V,, and (ii) being a “clean interface” containing minimum

ledge density in it.
4 Summary

(i) A lattice direction vector in the parent lattice, which is neither rotated nor extended (or con-
tracted) by the transformation strain, thus becoming an intact direction vector in the product lattice,
is referred to as an invariant line of the transformation; and the transformation strain needed to pro-
duce the invariant line is referred to as the invariant line strain. There is no misfit between the two

lattices along the invariant line.

(ii) The morphology of needle-, rod- or lath-shaped precipitates produced in diffusional precipi-
tation transformations is conirolled by the invariant line strain; these precipitates grow parallel to the
invariant line vector, with their side interfaces (if any), including the habit plane containing the in-

variant line.

(iii) Mathematically, the invariant line strain consists of the pure lattice deformation B and the

rigid-body rotation R of thé product lattice relative to the parent lattice. The classic Bain deformation

is thought to be responsible for the lattice deformation in the FCC<>BCC(BCT) transformations;
whereas a generalized Bain deformation which, like the classic one, involves the smallest possible

atomic displacements, serves as the mode of laitice deformation in other transformations such as
HCP<BCC.

(iv) Using the matrix algebraic method and a searching and finding computer program, the in-
variant line vector and the untilted vectors of a transformation, or the eigenvectors of the invariant line
strain RB , the magnitude and sense of the rigid-body rotation(s) between the two lattices, and the
invariant line strain matrix involved in the transformation can be calculated in terms of the lattice pa-

rameters of the two lattices, and of the modes of the Bain deformation and rigid-body rotation.

(v) The crystallographic features of a transformation can be predicted based on the calculations
given in (iv) as follows. A needle-, rod-, or lath-shaped precipitate is assumed to grow (elongate )
along the invariant line. The OR between the two lattices is determined by the Bain deformation fol-
lowed by the rigid-body rotation(s) . The untilted habit plane and other interfaces are defined by the

invariant line and an untilted line.
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(vi) The experimental crystallographic features of the FCC<>BCC transformations in Cu-Cr and

Cr-Ni alloys, as well as those of the HCP<>BCC one in Zr-Nb alloy are in excellent agreement with

those predictions based on the invariant line strain model, thus suggesting that the model is valid for

predicting the crystallography of diffusional precipitations producing Widdmannstatten precipitates and

can well serve as a phenomenological theory of diffusional transformation crystallography .
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